metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[μ -aqua-diaqua(μ_3 -1*H*-benzimidazole-5-carboxylato- $\kappa^3 N^3$:*O*,*O'*)(μ_2 -1*H*benzimidazole-5-carboxylato- $\kappa^3 N^3$:*O*:*O'*)- μ_5 -sulfato- μ_4 -sulfatotricadmium]

Lai-Chen Chen,^a Shu-Min Huo,^a Hao-Zhao Chen,^a Ya-Qing Yang^a and Rong-Hua Zeng^{a,b}*

^aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and ^bKey Laboratory of Technology of Electrochemical Energy Storage and Power Generation in Guangdong Universities, South China Normal University, Guangzhou 510006, People's Republic of China Correspondence e-mail: zrh321@yahoo.com.cn

Received 11 August 2011; accepted 22 August 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.025; wR factor = 0.067; data-to-parameter ratio = 10.9.

The asymmetric unit of the title compound, $[Cd_3(C_8H_5N_2O_2)_2(SO_4)_2(H_2O)_3]_n$, contains three Cd^{II} ions, two sulfate anions, two 1*H*-benzimidazole-5-carboxylate (H₂bic) ligands and three coordinated water molecules. One Cd^{II} ion is six-coordinated and exhibits a distorted octahedral geometry, while the other two Cd^{II} ions are seven-coordinated, displaying a distorted pentagonal–bipyramidal geometry. The Cd^{II} ions are bridged by two types of sulfate anions, producing inorganic chains along [100]. These chains are further connected by the H₂bic ligands, leading to a three-dimensional framework. N–H···O and O–H···O hydrogen bonds and π - π interactions between the imidazole and benzene rings [centroid–centroid distances = 3.953 (2), 3.507 (2), 3.407 (2) and 3.561 (2) Å] further stabilize the crystal structure.

Related literature

For background to 1*H*-benzimidazole-5-carboxylate complexes, see: Gao *et al.* (2011); Guo *et al.* (2007); Peng, Ma *et al.* (2010); Peng, Qiu *et al.* (2010); Yao *et al.* (2008).

 $\gamma = 97.646 \ (1)^{\circ}$ V = 1109.3 (2) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.27 \times 0.25 \text{ mm}$

5772 measured reflections

3935 independent reflections

3593 reflections with $I > 2\sigma(I)$

 $\mu = 3.13 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int} = 0.020$

Z = 2

Experimental

Crystal data

 $\begin{bmatrix} Cd_3(C_8H_5N_2O_2)_2(SO_4)_2(H_2O)_3 \end{bmatrix}$ $M_r = 905.65$ Triclinic, $P\overline{1}$ a = 6.5932 (8) Å b = 13.0463 (16) Å c = 13.5933 (16) Å a = 104.313 (1)° $\beta = 96.662$ (1)°

Data collection

```
Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
T<sub>min</sub> = 0.454, T<sub>max</sub> = 0.508
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.025$ 1 restraint $wR(F^2) = 0.067$ H-atom parameters constrainedS = 1.06 $\Delta \rho_{max} = 0.56 \text{ e } \text{ Å}^{-3}$ 3935 reflections $\Delta \rho_{min} = -0.71 \text{ e } \text{ Å}^{-3}$ 361 parameters $\Delta \rho_{min} = -0.71 \text{ e } \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2\cdots O10^{i}$	0.86	1.98	2.836 (4)	176
$N4-H4A\cdots O7^{ii}$	0.86	1.98	2.716 (4)	143
$O1W - H1W \cdot \cdot \cdot O3^{iii}$	0.85	1.91	2.736 (4)	163
$O1W - H2W \cdot \cdot \cdot O2^{iv}$	0.85	1.91	2.734 (4)	165
O2W−H3W···O3 ^v	0.85	1.99	2.770 (4)	153
$O2W - H4W \cdots O10^{v}$	0.85	2.01	2.687 (4)	136
$O3W - H5W \cdot \cdot \cdot O8^{i}$	0.85	2.23	2.925 (4)	139
O3W−H6W···O4 ^{vi}	0.85	2.09	2.918 (4)	166
Symmetry codes: (i)	-x + 2	v + 1 - z (i	ii) $-r + 1 - v$	+1 -7 (iii)

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) -x + 1, -y + 1, -z; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1, -y, -z; (v) -x + 2, -y + 1, -z + 1; (vi) x + 1, y, z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge the Undergraduates' Innovating Experimentation Project of Guangdong Province, the Undergraduates' Innovating Experimentation Project of South China Normal University and the Students' Extracurricular Scientific Research Project of South China Normal University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2460).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Gao, J., Wang, J. & Dai, C. (2011). Acta Cryst. E67, m75.
- Guo, Z.-G., Li, X.-J., Gao, S.-Y., Li, Y.-F. & Cao, R. (2007). J. Mol. Struct. 846, 123–127.
- Peng, G., Ma, L., Liu, B., Cai, J.-B. & Deng, H. (2010). *Inorg. Chem. Commun.* **13**, 599–602.
- Peng, G., Qiu, Y.-C., Liu, Z.-H., Liu, B. & Deng, H. (2010). Cryst. Growth Des. 10, 114–121.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Yao, Y.-L., Che, Y.-X. & Zheng, J.-M. (2008). Inorg. Chem. Commun. 11, 883–885.

Acta Cryst. (2011). E67, m1312-m1313 [doi:10.1107/S1600536811034477]

Poly[μ -aqua-diaqua(μ_3 -1*H*-benzimidazole-5-carboxylato- $\kappa^3 N^3$:*O*,*O*')(μ_2 -1*H*-benzimidazole-5-carboxylato- $\kappa^3 N^3$:*O*:*O*')- μ_5 -sulfato- μ_4 -sulfato-tricadmium]

L.-C. Chen, S.-M. Huo, H.-Z. Chen, Y.-Q. Yang and R.-H. Zeng

Comment

There is currently much interest in employing N-heterocyclic carboxylic acids as multidentate ligands to design metal coordination polymers. This is because they have versatile coordination modes and can form high-dimensional polymers through hydrogen-bonding interactions in the process of self-assembly. 1*H*-Benzimidazole-5-carboxylic acid (H₂bic), having two N atoms of an aromatic group and one carboxylate group, is a good candidate for preparing novel coordination polymers. Up to now, one-, two- and three-dimensional coordination polymers constructed from the H₂bic ligand have been reported (Gao *et al.*, 2011; Guo *et al.*, 2007; Peng *et al.*, 2010a,b; Yao *et al.*, 2008). Herein we report the synthesis and crystal structure of the title complex.

As is shown in Fig. 1, the asymmetric unit of the title compound consists of three crystallographically independent Cd^{II} ions, two SO_4^{2-} anions, two H_2 bic ligands and three coordinated water molecules. The Cd2 atom is six-coordinated by one O atom and one N atom from two different H_2 bic ligands, two O atoms from two SO_4^{2-} anions and two water molecules, forming a distorted octahedral geometry. Both Cd1 and Cd3 atoms are seven-coordinated, displaying a distorted pentagonal-bipyramidal geometry. The Cd1 atom is coordinated by two O atoms from one H_2 bic ligand, four O atoms from two H_2 bic ligands, four O atoms and one water molecule, while Cd3 atom is surrounded by one O atom and one N atom from two H_2 bic ligands, four O atoms from three SO_4^{2-} anions and one water molecule. The Cd—O bond lengths range from 2.266 (3) to 2.532 (3) Å and the Cd—N distances vary from 2.230 (3) to 2.272 (3) Å.

In the title compound, the $SO_4^{2^-}$ anions adopt two coordination modes. One is a μ_4 -mode, bridging four Cd^{II} ions and the other is a μ_5 -mode, bridging five Cd^{II} ions. As is described in Fig. 2, the Cd^{II} ions are bridged by the two types of $SO_4^{2^-}$ anions, producing a one-dimensional inorganic chain along [1 0 0]. These chains are further bridged by the carboxylate and imidazole groups of the H₂bic ligands, resulting in a three-dimensional framework (Fig. 3). To the best of our knowledge, the title compound is the first three-dimensional transition metal coordination polymer based on H₂bic ligand. N—H···O and O—H···O hydrogen bonds (Table 1) and π - π interactions between the imidazole and benzene rings [centroid–centroid distances = 3.953 (2), 3.507 (2), 3.407 (2) and 3.561 (2) Å] further stabilize the crystal structure.

Experimental

A mixture of CdSO₄ (0.208 g, 1 mmol), H₂bic (0.162 g, 1 mmol) and water (10 ml) was stirred vigorously for 30 min and then sealed in a 20 ml Teflon-lined stainless-steel autoclave. The autoclave was heated and maintained at 433 K for 3 days, and then cooled to room temperature at 5 K h^{-1} . Colorless block crystals were obtained.

Refinement

H atoms of the H₂bic ligands were positioned geometrically and refined as riding atoms, with C—H = 0.93 and N—H = 0.86 Å, and with $U_{iso}(H) = 1.2U_{eq}(C,N)$. The water H atoms were located in a difference Fourier map and refined as riding, with a distance restraint of O—H = 0.85 Å and with $U_{iso}(H) = 1.2U_{eq}(O)$.

Figures

Fig. 1. The asymmetric unit of the title compound, showing displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+1, -z+1; (iii) x, y-1, z; (iv) -x+2, -y, -z; (v) x+1, y, z.]

Fig. 2. The one-dimensional chain extending along [1 0 0], formed by Cd atoms and sulfate anions.

Fig. 3. A view of the three-dimensional structure of the title compound.

Poly[μ -aqua-diaqua(μ_3 -1*H*-benzimidazole-5-carboxylato- $\kappa^3 N^3$:*O*,*O*')(μ_2 -1*H*-benzimidazole-5- carboxylato- $\kappa^3 N^3$:*O*:*O*')- μ_5 -sulfato- μ_4 -sulfato- tricadmium]

Crystal data	
$[Cd_3(C_8H_5N_2O_2)_2(SO_4)_2(H_2O)_3]$	Z = 2
$M_r = 905.65$	F(000) = 872
Triclinic, <i>P</i> T	$D_{\rm x} = 2.711 {\rm ~Mg~m^{-3}}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 6.5932 (8) Å	Cell parameters from 3917 reflections
<i>b</i> = 13.0463 (16) Å	$\theta = 2.5 - 25.2^{\circ}$
c = 13.5933 (16) Å	$\mu = 3.13 \text{ mm}^{-1}$
$\alpha = 104.313 \ (1)^{\circ}$	T = 298 K
$\beta = 96.662 \ (1)^{\circ}$	Block, colorless
$\gamma = 97.646 \ (1)^{\circ}$	$0.30 \times 0.27 \times 0.25 \text{ mm}$
$V = 1109.3 (2) \text{ Å}^3$	
Data collection	

Bruker APEXII CCD diffractometer	3935 independent reflections
Radiation source: fine-focus sealed tube	3593 reflections with $I > 2\sigma(I)$

graphite	$R_{\rm int} = 0.020$
φ and ω scans	$\theta_{\text{max}} = 25.2^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001)	$h = -7 \rightarrow 7$
$T_{\min} = 0.454, T_{\max} = 0.508$	$k = -13 \rightarrow 15$
5772 measured reflections	$l = -16 \rightarrow 13$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.025$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.067$	H-atom parameters constrained
<i>S</i> = 1.06	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0305P)^{2} + 1.2679P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3935 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
361 parameters	$\Delta \rho_{max} = 0.56 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta \rho_{min} = -0.71 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Cd1	0.61304 (4)	0.48371 (2)	0.37140 (2)	0.01777 (9)
Cd2	0.84093 (4)	0.24373 (2)	0.30872 (2)	0.01851 (9)
Cd3	1.17453 (4)	0.31863 (2)	0.10959 (2)	0.01829 (9)
S1	0.66513 (14)	0.33480 (8)	0.11673 (7)	0.0152 (2)
S2	1.12894 (14)	0.49174 (7)	0.36347 (7)	0.0135 (2)
N1	1.0207 (5)	0.2733 (3)	-0.0571 (2)	0.0197 (7)
C6	1.0162 (6)	0.3440 (3)	-0.1108 (3)	0.0225 (9)
Н6	1.0520	0.4177	-0.0821	0.027*
C8	0.9189 (6)	0.0704 (3)	-0.1153 (3)	0.0154 (8)
H8	0.9361	0.0589	-0.0502	0.018*
C7	0.9513 (6)	0.1732 (3)	-0.1279 (3)	0.0156 (8)
C3	0.8338 (6)	0.0033 (3)	-0.3013 (3)	0.0218 (9)
Н3	0.8002	-0.0553	-0.3589	0.026*
C4	0.8563 (7)	0.1046 (4)	-0.3146 (3)	0.0246 (9)
H4	0.8338	0.1158	-0.3797	0.030*
C5	0.9148 (6)	0.1906 (3)	-0.2263 (3)	0.0191 (8)
C2	0.8598 (6)	-0.0150 (3)	-0.2030 (3)	0.0161 (8)
C16	0.6557 (7)	0.8881 (3)	0.4017 (3)	0.0226 (9)
H16	0.6714	0.8841	0.4695	0.027*
C9	0.6064 (6)	0.6877 (3)	0.3474 (3)	0.0195 (9)
C10	0.6106 (6)	0.7927 (3)	0.3226 (3)	0.0183 (8)
C15	0.6775 (7)	0.9878 (3)	0.3828 (3)	0.0240 (9)
H15	0.7064	1.0506	0.4361	0.029*
O6	0.8233 (4)	0.2704 (2)	0.1470 (2)	0.0239 (6)

O5 0.5458 (5) 0.3615 (2) 0.2041 (2) O8 0.7711 (5) 0.4300 (2) 0.0964 (2) O4 0.5783 (5) 0.6023 (2) 0.2762 (2) O3 0.6395 (5) 0.6846 (2) 0.4412 (2) O9 0.9346 (4) 0.4272 (2) 0.3769 (2) O10 1.0948 (5) 0.6016 (2) 0.3744 (2) O12 1.1865 (5) 0.4465 (2) 0.2640 (2) O7 0.5172 (5) 0.2693 (2) 0.0280 (2) C11 0.5815 (6) 0.7939 (3) 0.2201 (3) H11 0.5493 0.7311 0.1668 C12 0.6033 (6) 0.8950 (3) 0.2021 (3) C14 0.6545 (6) 0.9901 (3) 0.2807 (3) O11 1.2984 (4) 0.4879 (2) 0.4437 (2) N2 0.9543 (5) 0.2985 (3) -0.2121 (3) H2 0.9420 0.3318 -0.2591 N4 0.5920 (5) 0.9255 (3) 0.1113 (2) H4A 0.5611 0.8834 0	
08 0.7711 (5) 0.4300 (2) 0.0964 (2) 04 0.5783 (5) 0.6023 (2) 0.2762 (2) 03 0.6395 (5) 0.6846 (2) 0.4412 (2) 09 0.9346 (4) 0.4272 (2) 0.3769 (2) 010 1.0948 (5) 0.6016 (2) 0.3744 (2) 012 1.1865 (5) 0.4465 (2) 0.2640 (2) 07 0.5172 (5) 0.2693 (2) 0.0280 (2) 011 0.5815 (6) 0.7939 (3) 0.2201 (3) H11 0.5493 0.7311 0.1668 C12 0.6033 (6) 0.8950 (3) 0.2021 (3) C14 0.6545 (6) 0.9901 (3) 0.2807 (3) 011 1.2984 (4) 0.4879 (2) 0.4437 (2) N2 0.9430 0.3318 -0.2591 N4 0.5910 (5) 0.9255 (3) 0.1113 (2) H4A 0.5611 0.8834 0.0501 C1 0.8336 (6) -0.1274 (3) -0.1935 (3) O1 0.8145 (5) -0.1439 (2) -0.	0.0259 (7)
O40.5783 (5)0.6023 (2)0.2762 (2)O30.6395 (5)0.6846 (2)0.4412 (2)O90.9346 (4)0.4272 (2)0.3769 (2)O101.0948 (5)0.6016 (2)0.3744 (2)O121.1865 (5)0.4465 (2)0.2640 (2)O70.5172 (5)0.2693 (2)0.0280 (2)C110.5815 (6)0.7939 (3)0.2201 (3)H110.54930.73110.1668C120.6033 (6)0.8950 (3)0.2021 (3)C140.6545 (6)0.9901 (3)0.2807 (3)O111.2984 (4)0.4879 (2)0.4437 (2)N20.9543 (5)0.2985 (3)-0.2121 (3)H20.94200.3318-0.2591N40.56110.88340.0501C10.8336 (6)-0.1274 (3)-0.1935 (3)O10.8145 (5)-0.1439 (2)-0.1085 (2)N30.6749 (5)1.0765 (3)0.2371 (2)C130.6382 (6)1.0324 (3)0.1363 (3)H130.64411.07190.0881O20.8337 (4)-0.2035 (2)-0.2739 (2)O2W0.9522 (5)0.2349 (2)0.4699 (2)H3W1.07900.23740.4926H4W0.89200.25730.5212O3W1.3093 (5)0.4879 (2)0.0835 (2)H5W1.35440.51970.0409H6W1.36850.52380.1434O1W0.5431 (4)0.3032 (2)0.3864 (2)H1W0.5114	0.0303 (7)
O30.6395 (5)0.6846 (2)0.4412 (2)O90.9346 (4)0.4272 (2)0.3769 (2)O101.0948 (5)0.6016 (2)0.3744 (2)O121.1865 (5)0.4465 (2)0.2640 (2)O70.5172 (5)0.2693 (2)0.0280 (2)C110.5815 (6)0.7939 (3)0.2201 (3)H110.54930.73110.1668C120.6033 (6)0.8950 (3)0.2021 (3)C140.6545 (6)0.9901 (3)0.2807 (3)O111.2984 (4)0.4879 (2)0.4437 (2)N20.9543 (5)0.2985 (3)-0.2121 (3)H20.94200.3318-0.2591N40.5920 (5)0.9255 (3)0.1113 (2)H4A0.56110.88340.0501C10.8336 (6)-0.1274 (3)-0.1935 (3)O10.8145 (5)-0.1439 (2)-0.1085 (2)N30.6749 (5)1.0765 (3)0.2371 (2)C130.6382 (6)1.0324 (3)0.1363 (3)H130.64411.07190.0881O20.8337 (4)-0.2035 (2)-0.2739 (2)O2W0.9522 (5)0.2349 (2)0.4699 (2)H3W1.07900.23740.4926H4W0.89200.25730.5212O3W1.3093 (5)0.4879 (2)0.0835 (2)H5W1.35440.51970.0409H6W1.36850.52380.1434O1W0.51140.30530.4457	0.0275 (7)
09 0.9346 (4) 0.4272 (2) 0.3769 (2) 010 1.0948 (5) 0.6016 (2) 0.3744 (2) 012 1.1865 (5) 0.4465 (2) 0.2640 (2) 07 0.5172 (5) 0.2693 (2) 0.0280 (2) C11 0.5815 (6) 0.7939 (3) 0.2201 (3) H11 0.5493 0.7311 0.1668 C12 0.6033 (6) 0.8950 (3) 0.2021 (3) C14 0.6545 (6) 0.9901 (3) 0.2807 (3) O11 1.2984 (4) 0.4879 (2) 0.4437 (2) N2 0.9543 (5) 0.2985 (3) -0.2121 (3) H2 0.9420 0.3318 -0.2591 N4 0.5920 (5) 0.9255 (3) 0.1113 (2) H4A 0.5611 0.8834 0.0501 C1 0.8336 (6) -0.1274 (3) -0.1935 (3) O1 0.8145 (5) -0.1439 (2) -0.1085 (2) N3 0.6749 (5) 1.0765 (3) 0.2371 (2) C13 0.6382 (6) 1.0324 (3)	0.0257 (6)
O101.0948 (5)0.6016 (2)0.3744 (2)O121.1865 (5)0.4465 (2)0.2640 (2)O70.5172 (5)0.2693 (2)0.0280 (2)C110.5815 (6)0.7939 (3)0.2201 (3)H110.54930.73110.1668C120.6033 (6)0.8950 (3)0.2021 (3)C140.6545 (6)0.9901 (3)0.2807 (3)O111.2984 (4)0.4879 (2)0.4437 (2)N20.9543 (5)0.2985 (3)-0.2121 (3)H20.94200.3318-0.2591N40.5920 (5)0.9255 (3)0.1113 (2)H4A0.56110.88340.0501C10.8336 (6)-0.1274 (3)-0.1935 (3)O10.8145 (5)-0.1439 (2)-0.1085 (2)N30.6749 (5)1.0765 (3)0.2371 (2)C130.6382 (6)1.0324 (3)0.1363 (3)H130.64411.07190.0881O20.8337 (4)-0.2035 (2)-0.2739 (2)O2W0.9522 (5)0.2349 (2)0.4699 (2)H3W1.07900.23740.4926H4W0.89200.25730.5212O3W1.3093 (5)0.4879 (2)0.0835 (2)H5W1.35440.51970.0409H6W1.36850.52380.1434O1W0.5431 (4)0.3032 (2)0.3864 (2)H1W0.51140.30530.4457	0.0198 (6)
O121.1865 (5)0.4465 (2)0.2640 (2)O70.5172 (5)0.2693 (2)0.0280 (2)C110.5815 (6)0.7939 (3)0.2201 (3)H110.54930.73110.1668C120.6033 (6)0.8950 (3)0.2021 (3)C140.6545 (6)0.9901 (3)0.2807 (3)O111.2984 (4)0.4879 (2)0.4437 (2)N20.9543 (5)0.2985 (3)-0.2121 (3)H20.94200.3318-0.2591N40.5920 (5)0.9255 (3)0.1113 (2)H4A0.56110.88340.0501C10.8336 (6)-0.1274 (3)-0.1935 (3)O10.8145 (5)-0.1439 (2)-0.1085 (2)N30.6749 (5)1.0765 (3)0.2371 (2)C130.6382 (6)1.0324 (3)0.1363 (3)H130.64411.07190.0881O20.8337 (4)-0.2035 (2)-0.2739 (2)O2W0.9522 (5)0.2349 (2)0.4699 (2)H3W1.07900.23740.4926H4W0.89200.25730.5212O3W1.3093 (5)0.4879 (2)0.0835 (2)H5W1.36850.52380.1434O1W0.5431 (4)0.30530.4457	0.0238 (6)
O70.5172 (5)0.2693 (2)0.0280 (2)C110.5815 (6)0.7939 (3)0.2201 (3)H110.54930.73110.1668C120.6033 (6)0.8950 (3)0.2021 (3)C140.6545 (6)0.9901 (3)0.2807 (3)O111.2984 (4)0.4879 (2)0.4437 (2)N20.9543 (5)0.2985 (3)-0.2121 (3)H20.94200.3318-0.2591N40.5920 (5)0.9255 (3)0.1113 (2)H4A0.56110.88340.0501C10.8336 (6)-0.1274 (3)-0.1935 (3)O10.8145 (5)-0.1439 (2)-0.1085 (2)N30.6749 (5)1.0765 (3)0.2371 (2)C130.6382 (6)1.0324 (3)0.1363 (3)H130.64411.07190.0881O20.8337 (4)-0.2035 (2)-0.2739 (2)O2W0.9522 (5)0.2349 (2)0.4699 (2)H4W0.89200.25730.5212O3W1.3093 (5)0.4879 (2)0.0835 (2)H5W1.35440.51970.0409H6W1.36850.52380.1434O1W0.5431 (4)0.30530.4457	0.0276 (7)
C110.5815 (6)0.7939 (3)0.2201 (3)H110.54930.73110.1668C120.6033 (6)0.8950 (3)0.2021 (3)C140.6545 (6)0.9901 (3)0.2807 (3)O111.2984 (4)0.4879 (2)0.4437 (2)N20.9543 (5)0.2985 (3)-0.2121 (3)H20.94200.3318-0.2591N40.5920 (5)0.9255 (3)0.1113 (2)H4A0.56110.88340.0501C10.8336 (6)-0.1274 (3)-0.1935 (3)O10.8145 (5)-0.1439 (2)-0.1085 (2)N30.6749 (5)1.0765 (3)0.2371 (2)C130.6382 (6)1.0324 (3)0.1363 (3)H130.64411.07190.0881O20.8337 (4)-0.2035 (2)-0.2739 (2)O2W0.9522 (5)0.2349 (2)0.4699 (2)H3W1.07900.23740.4926H4W0.89200.25730.5212O3W1.3093 (5)0.4879 (2)0.0835 (2)H5W1.35440.51970.0409H6W1.36850.52380.1434O1W0.5431 (4)0.3032 (2)0.3864 (2)H1W0.51140.30530.4457	0.0295 (7)
H110.54930.73110.1668C120.6033 (6)0.8950 (3)0.2021 (3)C140.6545 (6)0.9901 (3)0.2807 (3)O111.2984 (4)0.4879 (2)0.4437 (2)N20.9543 (5)0.2985 (3)-0.2121 (3)H20.94200.3318-0.2591N40.5920 (5)0.9255 (3)0.1113 (2)H4A0.56110.88340.0501C10.8336 (6)-0.1274 (3)-0.1935 (3)O10.8145 (5)-0.1439 (2)-0.1085 (2)N30.6749 (5)1.0765 (3)0.2371 (2)C130.6382 (6)1.0324 (3)0.1363 (3)H130.64411.07190.0881O20.8337 (4)-0.2035 (2)-0.2739 (2)O2W0.9522 (5)0.2349 (2)0.4699 (2)H3W1.07900.23740.4926H4W0.89200.25730.5212O3W1.3093 (5)0.4879 (2)0.0835 (2)H5W1.35440.51970.0409H6W1.36850.52380.1434O1W0.5431 (4)0.3032 (2)0.3864 (2)H1W0.51140.30530.4457	0.0182 (8)
C120.6033 (6)0.8950 (3)0.2021 (3)C140.6545 (6)0.9901 (3)0.2807 (3)O111.2984 (4)0.4879 (2)0.4437 (2)N20.9543 (5)0.2985 (3)-0.2121 (3)H20.94200.3318-0.2591N40.5920 (5)0.9255 (3)0.1113 (2)H4A0.56110.88340.0501C10.8336 (6)-0.1274 (3)-0.1935 (3)O10.8145 (5)-0.1439 (2)-0.1085 (2)N30.6749 (5)1.0765 (3)0.2371 (2)C130.6382 (6)1.0324 (3)0.1363 (3)H130.64411.07190.0881O20.8337 (4)-0.2035 (2)-0.2739 (2)O2W0.9522 (5)0.2349 (2)0.4699 (2)H3W1.07900.23740.4926H4W0.89200.25730.5212O3W1.3093 (5)0.4879 (2)0.0835 (2)H5W1.35440.51970.0409H6W1.36850.52380.1434O1W0.5431 (4)0.30530.4457	0.022*
C140.6545 (6)0.9901 (3)0.2807 (3)O111.2984 (4)0.4879 (2)0.4437 (2)N20.9543 (5)0.2985 (3)-0.2121 (3)H20.94200.3318-0.2591N40.5920 (5)0.9255 (3)0.1113 (2)H4A0.56110.88340.0501C10.8336 (6)-0.1274 (3)-0.1935 (3)O10.8145 (5)-0.1439 (2)-0.1085 (2)N30.6749 (5)1.0765 (3)0.2371 (2)C130.6382 (6)1.0324 (3)0.1363 (3)H130.64411.07190.0881O20.8337 (4)-0.2035 (2)-0.2739 (2)O2W0.9522 (5)0.2349 (2)0.4699 (2)H3W1.07900.23740.4926H4W0.89200.25730.5212O3W1.3093 (5)0.4879 (2)0.0835 (2)H5W1.35440.51970.0409H6W1.36850.52380.1434O1W0.5431 (4)0.3032 (2)0.3864 (2)H1W0.51140.30530.4457	0.0170 (8)
O111.2984 (4)0.4879 (2)0.4437 (2)N20.9543 (5)0.2985 (3)-0.2121 (3)H20.94200.3318-0.2591N40.5920 (5)0.9255 (3)0.1113 (2)H4A0.56110.88340.0501C10.8336 (6)-0.1274 (3)-0.1935 (3)O10.8145 (5)-0.1439 (2)-0.1085 (2)N30.6749 (5)1.0765 (3)0.2371 (2)C130.6382 (6)1.0324 (3)0.1363 (3)H130.64411.07190.0881O20.8337 (4)-0.2035 (2)-0.2739 (2)O2W0.9522 (5)0.2349 (2)0.4699 (2)H3W1.07900.23740.4926H4W0.89200.25730.5212O3W1.3093 (5)0.4879 (2)0.0835 (2)H5W1.35440.51970.0409H6W1.36850.52380.1434O1W0.5431 (4)0.3032 (2)0.3864 (2)H1W0.51140.30530.4457	0.0190 (8)
N20.9543 (5)0.2985 (3)-0.2121 (3)H20.94200.3318-0.2591N40.5920 (5)0.9255 (3)0.1113 (2)H4A0.56110.88340.0501C10.8336 (6)-0.1274 (3)-0.1935 (3)O10.8145 (5)-0.1439 (2)-0.1085 (2)N30.6749 (5)1.0765 (3)0.2371 (2)C130.6382 (6)1.0324 (3)0.1363 (3)H130.64411.07190.0881O20.8337 (4)-0.2035 (2)-0.2739 (2)O2W0.9522 (5)0.2349 (2)0.4699 (2)H3W1.07900.23740.4926H4W0.89200.25730.5212O3W1.3093 (5)0.4879 (2)0.0835 (2)H5W1.35440.51970.0409H6W1.36850.52380.1434O1W0.5431 (4)0.3032 (2)0.3864 (2)H1W0.51140.30530.4457	0.0231 (6)
H20.94200.3318-0.2591N40.5920 (5)0.9255 (3)0.1113 (2)H4A0.56110.88340.0501C10.8336 (6)-0.1274 (3)-0.1935 (3)O10.8145 (5)-0.1439 (2)-0.1085 (2)N30.6749 (5)1.0765 (3)0.2371 (2)C130.6382 (6)1.0324 (3)0.1363 (3)H130.64411.07190.0881O20.8337 (4)-0.2035 (2)-0.2739 (2)O2W0.9522 (5)0.2349 (2)0.4699 (2)H3W1.07900.23740.4926H4W0.89200.25730.5212O3W1.3093 (5)0.4879 (2)0.0835 (2)H5W1.36850.52380.1434O1W0.5431 (4)0.3032 (2)0.3864 (2)H1W0.51140.30530.4457) 0.0234 (8)
N40.5920 (5)0.9255 (3)0.1113 (2)H4A0.56110.88340.0501C10.8336 (6)-0.1274 (3)-0.1935 (3)O10.8145 (5)-0.1439 (2)-0.1085 (2)N30.6749 (5)1.0765 (3)0.2371 (2)C130.6382 (6)1.0324 (3)0.1363 (3)H130.64411.07190.0881O20.8337 (4)-0.2035 (2)-0.2739 (2)O2W0.9522 (5)0.2349 (2)0.4699 (2)H3W1.07900.23740.4926H4W0.89200.25730.5212O3W1.3093 (5)0.4879 (2)0.0835 (2)H5W1.36850.52380.1434O1W0.5431 (4)0.3032 (2)0.3864 (2)H1W0.51140.30530.4457	0.028*
H4A0.56110.88340.0501C10.8336 (6)-0.1274 (3)-0.1935 (3)O10.8145 (5)-0.1439 (2)-0.1085 (2)N30.6749 (5)1.0765 (3)0.2371 (2)C130.6382 (6)1.0324 (3)0.1363 (3)H130.64411.07190.0881O20.8337 (4)-0.2035 (2)-0.2739 (2)O2W0.9522 (5)0.2349 (2)0.4699 (2)H3W1.07900.23740.4926H4W0.89200.25730.5212O3W1.3093 (5)0.4879 (2)0.0835 (2)H5W1.35440.51970.0409H6W1.36850.52380.1434O1W0.5431 (4)0.3032 (2)0.3864 (2)H1W0.51140.30530.4457	0.0188 (7)
C10.8336 (6)-0.1274 (3)-0.1935 (3)O10.8145 (5)-0.1439 (2)-0.1085 (2)N30.6749 (5)1.0765 (3)0.2371 (2)C130.6382 (6)1.0324 (3)0.1363 (3)H130.64411.07190.0881O20.8337 (4)-0.2035 (2)-0.2739 (2)O2W0.9522 (5)0.2349 (2)0.4699 (2)H3W1.07900.23740.4926H4W0.89200.25730.5212O3W1.3093 (5)0.4879 (2)0.0835 (2)H5W1.35440.51970.0409H6W1.36850.52380.1434O1W0.5431 (4)0.3032 (2)0.3864 (2)H1W0.51140.30530.4457	0.023*
O10.8145 (5)-0.1439 (2)-0.1085 (2)N30.6749 (5)1.0765 (3)0.2371 (2)C130.6382 (6)1.0324 (3)0.1363 (3)H130.64411.07190.0881O20.8337 (4)-0.2035 (2)-0.2739 (2)O2W0.9522 (5)0.2349 (2)0.4699 (2)H3W1.07900.23740.4926H4W0.89200.25730.5212O3W1.3093 (5)0.4879 (2)0.0835 (2)H5W1.36850.52380.1434O1W0.5431 (4)0.3032 (2)0.3864 (2)H1W0.51140.30530.4457) 0.0188 (9)
N30.6749 (5)1.0765 (3)0.2371 (2)C130.6382 (6)1.0324 (3)0.1363 (3)H130.64411.07190.0881O20.8337 (4)-0.2035 (2)-0.2739 (2)O2W0.9522 (5)0.2349 (2)0.4699 (2)H3W1.07900.23740.4926H4W0.89200.25730.5212O3W1.3093 (5)0.4879 (2)0.0835 (2)H5W1.35440.51970.0409H6W1.36850.52380.1434O1W0.5431 (4)0.3032 (2)0.3864 (2)H1W0.51140.30530.4457) 0.0266 (7)
C130.6382 (6)1.0324 (3)0.1363 (3)H130.64411.07190.0881O20.8337 (4)-0.2035 (2)-0.2739 (2)O2W0.9522 (5)0.2349 (2)0.4699 (2)H3W1.07900.23740.4926H4W0.89200.25730.5212O3W1.3093 (5)0.4879 (2)0.0835 (2)H5W1.35440.51970.0409H6W1.36850.52380.1434O1W0.5431 (4)0.3032 (2)0.3864 (2)H1W0.51140.30530.4457	0.0191 (7)
H130.64411.07190.0881O20.8337 (4)-0.2035 (2)-0.2739 (2)O2W0.9522 (5)0.2349 (2)0.4699 (2)H3W1.07900.23740.4926H4W0.89200.25730.5212O3W1.3093 (5)0.4879 (2)0.0835 (2)H5W1.35440.51970.0409H6W1.36850.52380.1434O1W0.5431 (4)0.3032 (2)0.3864 (2)H1W0.51140.30530.4457	0.0222 (9)
O20.8337 (4)-0.2035 (2)-0.2739 (2)O2W0.9522 (5)0.2349 (2)0.4699 (2)H3W1.07900.23740.4926H4W0.89200.25730.5212O3W1.3093 (5)0.4879 (2)0.0835 (2)H5W1.35440.51970.0409H6W1.36850.52380.1434O1W0.5431 (4)0.3032 (2)0.3864 (2)H1W0.51140.30530.4457	0.027*
O2W0.9522 (5)0.2349 (2)0.4699 (2)H3W1.07900.23740.4926H4W0.89200.25730.5212O3W1.3093 (5)0.4879 (2)0.0835 (2)H5W1.35440.51970.0409H6W1.36850.52380.1434O1W0.5431 (4)0.3032 (2)0.3864 (2)H1W0.51140.30530.4457) 0.0245 (7)
H3W1.07900.23740.4926H4W0.89200.25730.5212O3W1.3093 (5)0.4879 (2)0.0835 (2)H5W1.35440.51970.0409H6W1.36850.52380.1434O1W0.5431 (4)0.3032 (2)0.3864 (2)H1W0.51140.30530.4457	0.0254 (7)
H4W0.89200.25730.5212O3W1.3093 (5)0.4879 (2)0.0835 (2)H5W1.35440.51970.0409H6W1.36850.52380.1434O1W0.5431 (4)0.3032 (2)0.3864 (2)H1W0.51140.30530.4457	0.030*
O3W1.3093 (5)0.4879 (2)0.0835 (2)H5W1.35440.51970.0409H6W1.36850.52380.1434O1W0.5431 (4)0.3032 (2)0.3864 (2)H1W0.51140.30530.4457	0.030*
H5W1.35440.51970.0409H6W1.36850.52380.1434O1W0.5431 (4)0.3032 (2)0.3864 (2)H1W0.51140.30530.4457	0.0305 (7)
H6W1.36850.52380.1434O1W0.5431 (4)0.3032 (2)0.3864 (2)H1W0.51140.30530.4457	0.037*
O1W0.5431 (4)0.3032 (2)0.3864 (2)H1W0.51140.30530.4457	0.037*
H1W 0.5114 0.3053 0.4457	0.0199 (6)
	0.024*
H2W 0.4386 0.2693 0.3422	0.024*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.01897 (17)	0.01555 (16)	0.02043 (16)	0.00466 (12)	0.00520 (12)	0.00592 (12)
Cd2	0.02124 (17)	0.01475 (16)	0.01756 (16)	0.00124 (12)	0.00324 (12)	0.00147 (12)
Cd3	0.02241 (17)	0.01492 (16)	0.01583 (16)	0.00122 (12)	0.00240 (12)	0.00221 (12)
S1	0.0164 (5)	0.0140 (5)	0.0139 (5)	0.0007 (4)	0.0021 (4)	0.0026 (4)
S2	0.0122 (5)	0.0131 (5)	0.0142 (5)	0.0008 (4)	0.0014 (4)	0.0027 (4)
N1	0.0241 (19)	0.0117 (17)	0.0215 (18)	0.0023 (14)	0.0020 (14)	0.0019 (14)
C6	0.025 (2)	0.017 (2)	0.025 (2)	0.0022 (17)	0.0028 (17)	0.0066 (17)
C8	0.020 (2)	0.0149 (19)	0.0127 (18)	0.0044 (16)	0.0034 (15)	0.0046 (15)
C7	0.0140 (19)	0.016 (2)	0.0164 (19)	0.0009 (15)	0.0028 (15)	0.0039 (16)
C3	0.025 (2)	0.025 (2)	0.013 (2)	0.0055 (18)	0.0035 (16)	-0.0011 (17)
C4	0.028 (2)	0.030 (2)	0.016 (2)	0.0043 (19)	-0.0018 (17)	0.0100 (18)
C5	0.014 (2)	0.023 (2)	0.023 (2)	0.0033 (16)	0.0021 (16)	0.0121 (18)

C2	0.0133 (19)	0.017 (2)	0.019 (2)	0.0032 (15)	0.0044 (15)	0.0044 (16)
C16	0.028 (2)	0.024 (2)	0.015 (2)	0.0016 (18)	0.0019 (17)	0.0057 (17)
C9	0.012 (2)	0.022 (2)	0.028 (2)	0.0039 (16)	0.0050 (16)	0.0122 (18)
C10	0.016 (2)	0.020 (2)	0.020 (2)	0.0022 (16)	0.0036 (16)	0.0070 (17)
C15	0.029 (2)	0.018 (2)	0.021 (2)	0.0003 (18)	-0.0004 (18)	0.0010 (17)
O6	0.0229 (16)	0.0247 (16)	0.0279 (16)	0.0078 (13)	0.0035 (12)	0.0120 (13)
O5	0.0269 (17)	0.0300 (17)	0.0221 (15)	0.0058 (13)	0.0104 (12)	0.0059 (13)
08	0.0300 (18)	0.0241 (17)	0.0386 (18)	-0.0016 (14)	0.0098 (14)	0.0131 (14)
O4	0.0368 (18)	0.0162 (16)	0.0282 (16)	0.0029 (13)	-0.0001 (13)	0.0069 (13)
O3	0.0304 (17)	0.0252 (13)	0.0252 (16)	0.0019 (13)	0.0018 (13)	0.0162 (12)
O9	0.0146 (14)	0.0201 (15)	0.0229 (15)	0.0000 (11)	0.0066 (11)	0.0023 (12)
O10	0.0342 (17)	0.0156 (15)	0.0225 (15)	0.0078 (13)	0.0019 (12)	0.0056 (12)
O12	0.0308 (17)	0.0274 (17)	0.0192 (15)	-0.0008 (13)	0.0144 (13)	-0.0055 (13)
07	0.0321 (18)	0.0283 (17)	0.0203 (15)	-0.0002 (14)	-0.0061 (13)	-0.0002 (13)
C11	0.020 (2)	0.016 (2)	0.0157 (19)	0.0039 (16)	0.0024 (15)	-0.0004 (16)
C12	0.016 (2)	0.015 (2)	0.019 (2)	0.0006 (16)	-0.0027 (15)	0.0063 (16)
C14	0.018 (2)	0.015 (2)	0.024 (2)	0.0021 (16)	0.0027 (16)	0.0072 (17)
O11	0.0161 (14)	0.0306 (17)	0.0241 (15)	0.0053 (12)	-0.0008 (12)	0.0112 (13)
N2	0.030 (2)	0.0241 (19)	0.0231 (19)	0.0060 (16)	0.0047 (15)	0.0174 (16)
N4	0.0263 (19)	0.0163 (17)	0.0121 (16)	0.0033 (14)	0.0012 (13)	0.0018 (13)
C1	0.012 (2)	0.016 (2)	0.025 (2)	-0.0006 (15)	-0.0027 (16)	0.0043 (17)
01	0.0368 (18)	0.0158 (15)	0.0251 (16)	0.0014 (13)	-0.0025 (13)	0.0067 (12)
N3	0.0206 (18)	0.0134 (17)	0.0201 (17)	-0.0015 (14)	-0.0009 (14)	0.0030 (14)
C13	0.025 (2)	0.022 (2)	0.021 (2)	0.0019 (18)	-0.0012(17)	0.0124 (18)
02	0.0189 (15)	0.0184 (15)	0.0302 (16)	0.0021 (12)	0.0015 (12)	-0.0032(13)
O2W	0.0279 (17)	0.0284 (17)	0.0182(14)	0.0057(13)	0.0020 (12)	0.0035 (13)
O3W	0.0418 (19)	0.0237 (16)	0.0221 (16)	-0.0005(14)	-0.0026(13)	0.0057 (13)
O1W	0.0180 (15)	0.0215 (15)	0.0164 (14)	-0.0008 (12)	0.0041 (11)	-0.0001 (11)
Geometric par	rameters (Å, °)					
Cd1-04		2 266 (3)	C3—	C4	1 36	8 (6)
Cd1 - 09		2.200(3) 2.335(3)	C3—	C2	1.50	0(5)
Cd1-05		2 386 (3)	C3—	H3	0.93	00
Cd1-011 ⁱ		2.398 (3)	C4—	C5	1.40	1 (6)
Cd1—O1W		2.403 (3)	C4—	H4	0.93	00
Cd1—O11 ⁱⁱ		2.437 (3)	C5—	N2	1.35	8 (5)
Cd1—O3		2.532 (3)	C2—	C1	1.49	4 (5)
Cd2—N3 ⁱⁱⁱ		2.229 (3)	C16–	C15	1.38	0 (6)
Cd2—O2W		2.264 (3)	C16–	C10	1.39	9 (6)
Cd2—O6		2.301 (3)	C16–	-H16	0.93	00
Cd2—O9		2.312 (3)	С9—	04	1.25	9 (5)
Cd2—O2 ^{iv}		2.349 (3)	С9—	O3	1.28	0 (5)
Cd2—O1W		2.461 (3)	С9—	C10	1.48	7 (5)
Cd3—N1		2.271 (3)	C10–	C11	1.39	0 (5)
Cd3—O1 ^{iv}		2.287 (3)	C15–	C14	1.38	8 (6)
Cd3—012		2.321 (3)	C15-	-H15	0 93	00
Cd3—O3W		2.394 (3)	C11–	-C12	1.39	2 (5)
· ·		(-)				× /

Cd3—O6	2.462 (3)	C11—H11	0.9300
Cd3—O5 ^v	2.551 (3)	C12—N4	1.384 (5)
S1—O8	1.445 (3)	C12—C14	1.394 (6)
S1—07	1.460 (3)	C14—N3	1.396 (5)
S1—O5	1.495 (3)	N2—H2	0.8600
S1—O6	1.506 (3)	N4—C13	1.335 (5)
S2—O12	1.451 (3)	N4—H4A	0.8600
S2—O10	1.454 (3)	C1—O1	1.243 (5)
S2—O11	1.483 (3)	C1—O2	1.282 (5)
S2—O9	1.493 (3)	N3—C13	1.328 (5)
N1—C6	1.312 (5)	С13—Н13	0.9300
N1—C7	1.399 (5)	O2W—H3W	0.8500
C6—N2	1.347 (5)	O2W—H4W	0.8500
С6—Н6	0.9300	O3W—H5W	0.8500
C8—C7	1.386 (5)	O3W—H6W	0.8501
C8—C2	1.391 (5)	O1W—H1W	0.8501
C8—H8	0.9300	O1W—H2W	0.8500
C7—C5	1.410 (5)		
O4—Cd1—O9	113.71 (10)	С4—С3—Н3	119.0
O4—Cd1—O5	80.91 (10)	С2—С3—Н3	119.0
O9—Cd1—O5	83.30 (10)	C3—C4—C5	117.3 (4)
O4—Cd1—O11 ⁱ	99.81 (10)	C3—C4—H4	121.3
O9—Cd1—O11 ⁱ	145.80 (9)	C5—C4—H4	121.3
O5—Cd1—O11 ⁱ	109.59 (10)	N2—C5—C4	132.6 (4)
O4—Cd1—O1W	149.15 (10)	N2—C5—C7	106.2 (3)
O9—Cd1—O1W	75.24 (9)	C4—C5—C7	121.2 (4)
O5—Cd1—O1W	70.61 (10)	C8—C2—C3	120.7 (4)
O11 ⁱ —Cd1—O1W	79.48 (9)	C8—C2—C1	119.8 (3)
04—Cd1—O11 ⁱⁱ	130.86 (10)	C3—C2—C1	119.5 (3)
O9—Cd1—O11 ⁱⁱ	80.54 (9)	C15—C16—C10	122.4 (4)
O5—Cd1—O11 ⁱⁱ	148.10 (10)	C15—C16—H16	118.8
O11 ⁱ —Cd1—O11 ⁱⁱ	72.16 (10)	C10—C16—H16	118.8
O1W—Cd1—O11 ⁱⁱ	78.73 (9)	O4—C9—O3	120.0 (4)
O4—Cd1—O3	54.20 (9)	O4—C9—C10	120.0 (4)
O9—Cd1—O3	113.17 (10)	O3—C9—C10	119.9 (4)
O5—Cd1—O3	135.11 (9)	C11—C10—C16	121.2 (4)
O11 ⁱ —Cd1—O3	80.54 (10)	С11—С10—С9	118.7 (4)
O1W—Cd1—O3	152.12 (9)	C16—C10—C9	120.0 (3)
O11 ⁱⁱ —Cd1—O3	76.75 (9)	C16—C15—C14	116.9 (4)
N3 ⁱⁱⁱ —Cd2—O2W	101.12 (11)	C16—C15—H15	121.5
N3 ⁱⁱⁱ —Cd2—O6	88.53 (11)	C14—C15—H15	121.5
O2W—Cd2—O6	164.12 (11)	S1—O6—Cd2	117.49 (16)
N3 ⁱⁱⁱ —Cd2—O9	166.27 (11)	S1—O6—Cd3	116.06 (15)
O2W—Cd2—O9	84.74 (10)	Cd2—O6—Cd3	110.03 (11)
O6—Cd2—O9	88.70 (10)	S1—O5—Cd1	135.31 (18)

$N3^{iii}$ —Cd2—O2 ^{iv}	94.34 (11)	S1—O5—Cd3 ⁱ	101.40 (14)
O2W—Cd2—O2 ^{iv}	85.19 (10)	Cd1—O5—Cd3 ⁱ	117.53 (11)
O6—Cd2—O2 ^{iv}	81.50 (10)	C9—O4—Cd1	99.4 (2)
O9—Cd2—O2 ^{iv}	98.54 (10)	C9—O3—Cd1	86.4 (2)
N3 ⁱⁱⁱ —Cd2—O1W	93.74 (11)	S2—O9—Cd2	124.43 (15)
O2W—Cd2—O1W	82.80 (10)	S2—O9—Cd1	124.10 (16)
O6—Cd2—O1W	109.37 (9)	Cd2—O9—Cd1	101.86 (10)
O9—Cd2—O1W	74.54 (9)	S2—O12—Cd3	156.42 (19)
O2 ^{iv} —Cd2—O1W	166.62 (10)	C10-C11-C12	115.8 (4)
N1—Cd3—O1 ^{iv}	92.82 (11)	C10-C11-H11	122.1
N1—Cd3—O12	140.73 (11)	C12-C11-H11	122.1
O1 ^{iv} —Cd3—O12	119.93 (11)	N4-C12-C11	131.1 (4)
N1—Cd3—O3W	86.41 (11)	N4-C12-C14	105.8 (3)
O1 ^{iv} —Cd3—O3W	153.63 (11)	C11—C12—C14	123.1 (4)
O12—Cd3—O3W	73.50 (10)	C15-C14-C12	120.5 (4)
N1—Cd3—O6	85.14 (11)	C15—C14—N3	130.6 (4)
O1 ^{iv} —Cd3—O6	81.41 (10)	C12—C14—N3	108.9 (3)
O12—Cd3—O6	79.61 (10)	S2—O11—Cd1 ^v	108.68 (15)
O3W—Cd3—O6	124.68 (10)	S2—O11—Cd1 ⁱⁱ	142.21 (17)
N1—Cd3—O5 ^v	135.91 (11)	Cd1 ^v —O11—Cd1 ⁱⁱ	107.84 (10)
$O1^{iv}$ —Cd3— $O5^{v}$	86.67 (10)	C6—N2—C5	107.6 (3)
O12—Cd3—O5 ^v	71.83 (10)	C6—N2—H2	126.2
O3W—Cd3—O5 ^v	75.92 (10)	C5—N2—H2	126.2
O6—Cd3—O5 ^v	137.90 (9)	C13—N4—C12	107.3 (3)
O8—S1—O7	112.03 (19)	C13—N4—H4A	126.4
O8—S1—O5	112.00 (18)	C12—N4—H4A	126.4
O7—S1—O5	106.71 (18)	O1—C1—O2	122.5 (4)
O8—S1—O6	108.93 (18)	O1—C1—C2	119.3 (3)
O7—S1—O6	110.12 (18)	O2—C1—C2	118.2 (4)
O5—S1—O6	106.92 (16)	C1—O1—Cd3 ^{iv}	112.1 (2)
012—S2—O10	111.20 (18)	C13—N3—C14	104.9 (3)
O12—S2—O11	107.91 (18)	C13—N3—Cd2 ^{vi}	123.2 (3)
O10—S2—O11	110.38 (17)	C14—N3—Cd2 ^{vi}	128.5 (3)
012—S2—O9	110.49 (17)	N3—C13—N4	113.1 (3)
O10—S2—O9	108.24 (17)	N3—C13—H13	123.4
O11—S2—O9	108.60 (16)	N4—C13—H13	123.4
C6—N1—C7	105.7 (3)	C1—O2—Cd2 ^{iv}	116.4 (2)
C6—N1—Cd3	122.0 (3)	Cd2—O2W—H3W	123.0
C7—N1—Cd3	131.4 (2)	Cd2—O2W—H4W	123.8
N1—C6—N2	112.8 (4)	H3W—O2W—H4W	107.7
N1—C6—H6	123.6	Cd3—O3W—H5W	145.3
N2—C6—H6	123.6	Cd3—O3W—H6W	102.8
C7—C8—C2	117.9 (3)	H5W—O3W—H6W	107.7
С7—С8—Н8	121.1	Cd1—O1W—Cd2	95.76 (9)
С2—С8—Н8	121.1	Cd1—O1W—H1W	108.5

C8—C7—N1	131.6 (3)	Cd2—O1W—H1W	130.5
C8—C7—C5	120.8 (4)	Cd1—O1W—H2W	108.6
N1—C7—C5	107.6 (3)	Cd2—O1W—H2W	104.1
C4—C3—C2	122.0 (4)	H1W—O1W—H2W	107.7
O1 ^{iv} —Cd3—N1—C6	-163.5 (3)	O4—Cd1—O3—C9	-0.5 (2)
O12—Cd3—N1—C6	48.4 (4)	O9—Cd1—O3—C9	102.9 (2)
O3W—Cd3—N1—C6	-9.9 (3)	O5—Cd1—O3—C9	-1.6 (3)
O6—Cd3—N1—C6	115.4 (3)	O11 ⁱ —Cd1—O3—C9	-109.9 (2)
O5 ^v —Cd3—N1—C6	-75.3 (4)	O1W—Cd1—O3—C9	-154.6 (2)
O1 ^{iv} —Cd3—N1—C7	3.3 (3)	O11 ⁱⁱ —Cd1—O3—C9	176.3 (2)
O12—Cd3—N1—C7	-144.9 (3)	O12—S2—O9—Cd2	32.9 (2)
O3W—Cd3—N1—C7	156.9 (4)	O10—S2—O9—Cd2	154.85 (17)
O6—Cd3—N1—C7	-77.9 (3)	O11—S2—O9—Cd2	-85.3 (2)
O5 ^v —Cd3—N1—C7	91.4 (4)	O12—S2—O9—Cd1	-107.1 (2)
C7—N1—C6—N2	-1.6 (5)	O10-S2-O9-Cd1	14.9 (2)
Cd3—N1—C6—N2	168.1 (3)	O11—S2—O9—Cd1	134.77 (18)
C2C8C7N1	-176.2 (4)	N3 ⁱⁱⁱ —Cd2—O9—S2	-142.1 (4)
C2—C8—C7—C5	3.3 (6)	O2W—Cd2—O9—S2	101.78 (19)
C6—N1—C7—C8	-178.1 (4)	O6—Cd2—O9—S2	-63.74 (19)
Cd3—N1—C7—C8	13.5 (6)	O2 ^{iv} —Cd2—O9—S2	17.5 (2)
C6—N1—C7—C5	2.4 (4)	O1W-Cd2-O9-S2	-174.3 (2)
Cd3—N1—C7—C5	-166.0 (3)	N3 ⁱⁱⁱ —Cd2—O9—Cd1	4.9 (5)
C2—C3—C4—C5	2.4 (6)	O2W-Cd2-O9-Cd1	-111.23 (11)
C3—C4—C5—N2	178.4 (4)	O6—Cd2—O9—Cd1	83.25 (11)
C3—C4—C5—C7	0.8 (6)	O2 ^{iv} —Cd2—O9—Cd1	164.46 (10)
C8—C7—C5—N2	178.1 (3)	O1W-Cd2-O9-Cd1	-27.26 (9)
N1—C7—C5—N2	-2.3 (4)	O4—Cd1—O9—S2	26.4 (2)
C8—C7—C5—C4	-3.7 (6)	O5—Cd1—O9—S2	103.35 (19)
N1—C7—C5—C4	175.8 (4)	O11 ⁱ —Cd1—O9—S2	-141.33 (17)
C7—C8—C2—C3	-0.1 (6)	O1W—Cd1—O9—S2	175.0 (2)
C7—C8—C2—C1	176.9 (3)	O11 ⁱⁱ —Cd1—O9—S2	-104.26 (19)
C4—C3—C2—C8	-2.8 (6)	O3—Cd1—O9—S2	-33.2 (2)
C4—C3—C2—C1	-179.9 (4)	O4—Cd1—O9—Cd2	-120.77 (11)
C15-C16-C10-C11	-1.3 (6)	O5—Cd1—O9—Cd2	-43.79 (10)
C15—C16—C10—C9	174.8 (4)	O11 ⁱ —Cd1—O9—Cd2	71.53 (19)
O4—C9—C10—C11	0.5 (6)	O1W—Cd1—O9—Cd2	27.87 (10)
O3—C9—C10—C11	177.8 (4)	O11 ⁱⁱ —Cd1—O9—Cd2	108.61 (11)
O4—C9—C10—C16	-175.7 (4)	O3—Cd1—O9—Cd2	179.70 (8)
O3—C9—C10—C16	1.6 (6)	O10—S2—O12—Cd3	-132.4 (5)
C10-C16-C15-C14	-0.5 (6)	O11—S2—O12—Cd3	106.4 (5)
O8—S1—O6—Cd2	118.20 (19)	O9—S2—O12—Cd3	-12.2 (6)
O7—S1—O6—Cd2	-118.58 (19)	N1—Cd3—O12—S2	93.6 (5)
O5—S1—O6—Cd2	-3.0 (2)	O1 ^{iv} —Cd3—O12—S2	-48.9 (5)
O8—S1—O6—Cd3	-15.0 (2)	O3W—Cd3—O12—S2	155.9 (5)
O7—S1—O6—Cd3	108.25 (19)	O6—Cd3—O12—S2	24.8 (5)
O5—S1—O6—Cd3	-136.19 (17)	O5 ^v —Cd3—O12—S2	-123.9 (5)

N3 ⁱⁱⁱ —Cd2—O6—S1	103.62 (19)	C16-C10-C11-C12	1.0 (6)
O2W-Cd2-O6-S1	-128.4 (3)	C9—C10—C11—C12	-175.1 (3)
O9—Cd2—O6—S1	-62.93 (18)	C10-C11-C12-N4	177.6 (4)
O2 ^{iv} —Cd2—O6—S1	-161.77 (19)	C10-C11-C12-C14	1.0 (6)
O1W—Cd2—O6—S1	10.2 (2)	C16—C15—C14—C12	2.5 (6)
N3 ⁱⁱⁱ —Cd2—O6—Cd3	-120.60 (13)	C16—C15—C14—N3	-177.2 (4)
O2W—Cd2—O6—Cd3	7.4 (4)	N4—C12—C14—C15	179.8 (4)
O9—Cd2—O6—Cd3	72.85 (12)	C11—C12—C14—C15	-2.8 (6)
O2 ^{iv} —Cd2—O6—Cd3	-25.99 (11)	N4—C12—C14—N3	-0.4 (4)
O1W-Cd2-O6-Cd3	145.96 (10)	C11—C12—C14—N3	176.9 (4)
N1—Cd3—O6—S1	-60.98 (18)	O12—S2—O11—Cd1 ^v	24.1 (2)
O1 ^{iv} —Cd3—O6—S1	-154.58 (19)	O10—S2—O11—Cd1 ^v	-97.64 (18)
O12—Cd3—O6—S1	82.68 (18)	O9—S2—O11—Cd1 ^v	143.85 (14)
O3W—Cd3—O6—S1	21.2 (2)	O12—S2—O11—Cd1 ⁱⁱ	-171.4 (3)
O5 ^v —Cd3—O6—S1	130.18 (16)	O10—S2—O11—Cd1 ⁱⁱ	66.9 (3)
N1-Cd3-O6-Cd2	162.54 (14)	O9—S2—O11—Cd1 ⁱⁱ	-51.6 (3)
O1 ^{iv} —Cd3—O6—Cd2	68.94 (12)	N1—C6—N2—C5	0.1 (5)
O12—Cd3—O6—Cd2	-53.79 (12)	C4—C5—N2—C6	-176.5 (4)
O3W—Cd3—O6—Cd2	-115.24 (12)	C7—C5—N2—C6	1.4 (4)
O5 ^v —Cd3—O6—Cd2	-6.3 (2)	C11—C12—N4—C13	-175.9 (4)
O8—S1—O5—Cd1	-44.7 (3)	C14—C12—N4—C13	1.1 (4)
O7—S1—O5—Cd1	-167.6 (2)	C8—C2—C1—O1	17.5 (5)
O6—S1—O5—Cd1	74.6 (3)	C3—C2—C1—O1	-165.4 (4)
08—S1—O5—Cd3 ⁱ	106.28 (17)	C8—C2—C1—O2	-161.8 (3)
O7—S1—O5—Cd3 ⁱ	-16.65 (19)	C3—C2—C1—O2	15.2 (5)
O6—S1—O5—Cd3 ⁱ	-134.47 (15)	O2—C1—O1—Cd3 ^{iv}	7.8 (5)
O4—Cd1—O5—S1	72.8 (2)	C2—C1—O1—Cd3 ^{iv}	-171.5 (3)
O9—Cd1—O5—S1	-42.5 (2)	C15—C14—N3—C13	179.3 (4)
O11 ⁱ —Cd1—O5—S1	170.1 (2)	C12—C14—N3—C13	-0.5 (4)
O1W—Cd1—O5—S1	-119.2 (3)	C15—C14—N3—Cd2 ^{vi}	19.9 (6)
O11 ⁱⁱ —Cd1—O5—S1	-102.4 (3)	C12—C14—N3—Cd2 ^{vi}	-159.9 (3)
O3—Cd1—O5—S1	73.8 (3)	C14—N3—C13—N4	1.3 (5)
O4—Cd1—O5—Cd3 ⁱ	-74.72 (14)	Cd2 ^{vi} —N3—C13—N4	162.0 (3)
O9—Cd1—O5—Cd3 ⁱ	169.89 (14)	C12—N4—C13—N3	-1.5 (5)
O11 ⁱ —Cd1—O5—Cd3 ⁱ	22.53 (15)	O1—C1—O2—Cd2 ^{iv}	-93.2 (4)
O1W—Cd1—O5—Cd3 ⁱ	93.22 (14)	C2-C1-O2-Cd2 ^{iv}	86.1 (4)
O11 ⁱⁱ —Cd1—O5—Cd3 ⁱ	110.02 (18)	O4—Cd1—O1W—Cd2	86.1 (2)
O3—Cd1—O5—Cd3 ⁱ	-73.80 (18)	O9—Cd1—O1W—Cd2	-25.60 (9)
O3—C9—O4—Cd1	-0.9 (4)	O5—Cd1—O1W—Cd2	62.39 (10)
C10—C9—O4—Cd1	176.4 (3)	O11 ⁱ —Cd1—O1W—Cd2	177.65 (10)
O9—Cd1—O4—C9	-101.8 (2)	O11 ⁱⁱ —Cd1—O1W—Cd2	-108.66 (10)
O5—Cd1—O4—C9	179.7 (3)	O3—Cd1—O1W—Cd2	-137.43 (17)
O11 ⁱ —Cd1—O4—C9	71.2 (3)	N3 ⁱⁱⁱ —Cd2—O1W—Cd1	-146.77 (11)

O1W-Cd1-O4-C9	157.1 (2)	O2W—Cd2—O1W—Cd1	112.47 (11)
O11 ⁱⁱ —Cd1—O4—C9	-3.6 (3)	O6—Cd2—O1W—Cd1	-57.02 (12)
O3—Cd1—O4—C9	0.5 (2)	O9—Cd2—O1W—Cd1	25.96 (9)
O4—C9—O3—Cd1	0.8 (4)	O2 ^{iv} —Cd2—O1W—Cd1	86.2 (4)
C10-C9-O3-Cd1	-176.5 (3)		
$(1, \dots, (1, \dots, $	10 11 11 (11)	1 (1) (2) (1) (1)	1.1

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+2, -*y*+1, -*z*+1; (iii) *x*, *y*-1, *z*; (iv) -*x*+2, -*y*, -*z*; (v) *x*+1, *y*, *z*; (vi) *x*, *y*+1, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2—H2···O10 ^{vii}	0.86	1.98	2.836 (4)	176
N4—H4A…O7 ^{viii}	0.86	1.98	2.716 (4)	143
O1W—H1W····O3 ^{ix}	0.85	1.91	2.736 (4)	163
$O1W$ — $H2W$ ··· $O2^{x}$	0.85	1.91	2.734 (4)	165
O2W—H3W····O3 ⁱⁱ	0.85	1.99	2.770 (4)	153
O2W—H4W…O10 ⁱⁱ	0.85	2.01	2.687 (4)	136
O3W—H5W····O8 ^{vii}	0.85	2.23	2.925 (4)	139
$O3W$ — $H6W$ ···· $O4^{v}$	0.85	2.09	2.918 (4)	166
~				_ · · · ·

Symmetry codes: (vii) -*x*+2, -*y*+1, -*z*; (viii) -*x*+1, -*y*+1, -*z*; (ix) -*x*+1, -*y*+1, -*z*+1; (x) -*x*+1, -*y*, -*z*; (ii) -*x*+2, -*y*+1, -*z*+1; (v) *x*+1, *y*, *z*.

